博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
python之numpy的基本使用
阅读量:5340 次
发布时间:2019-06-15

本文共 10393 字,大约阅读时间需要 34 分钟。

一、numpy概述

numpy(Numerical Python)提供了python对多维数组对象的支持:ndarray,具有矢量运算能力,快速、节省空间。numpy支持高级大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库。

二、创建ndarray数组

ndarray:N维数组对象(矩阵),所有元素必须是相同类型。 

ndarray属性:ndim属性,表示维度个数;shape属性,表示各维度大小;dtype属性,表示数据类型。

创建ndarray数组函数:

这里写图片描述

代码示例:

# -*- coding: utf-8 -*-import numpy;print '使用列表生成一维数组'data = [1,2,3,4,5,6]x = numpy.array(data)print x #打印数组print x.dtype #打印数组元素的类型print '使用列表生成二维数组'data = [[1,2],[3,4],[5,6]]x = numpy.array(data)print x #打印数组print x.ndim #打印数组的维度print x.shape #打印数组各个维度的长度。shape是一个元组print '使用zero/ones/empty创建数组:根据shape来创建'x = numpy.zeros(6) #创建一维长度为6的,元素都是0一维数组print xx = numpy.zeros((2,3)) #创建一维长度为2,二维长度为3的二维0数组print xx = numpy.ones((2,3)) #创建一维长度为2,二维长度为3的二维1数组print xx = numpy.empty((3,3)) #创建一维长度为2,二维长度为3,未初始化的二维数组print xprint '使用arrange生成连续元素'print numpy.arange(6) # [0,1,2,3,4,5,] 开区间print numpy.arange(0,6,2)  # [0, 2,4]
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31

三、指定ndarray数组元素的类型

NumPy数据类型:

这里写图片描述

代码示例:

print '生成指定元素类型的数组:设置dtype属性'x = numpy.array([1,2.6,3],dtype = numpy.int64)print x # 元素类型为int64print x.dtypex = numpy.array([1,2,3],dtype = numpy.float64)print x # 元素类型为float64print x.dtypeprint '使用astype复制数组,并转换类型'x = numpy.array([1,2.6,3],dtype = numpy.float64)y = x.astype(numpy.int32)print y # [1 2 3]print x # [ 1.   2.6  3. ]z = y.astype(numpy.float64)print z # [ 1.  2.  3.]print '将字符串元素转换为数值元素'x = numpy.array(['1','2','3'],dtype = numpy.string_)y = x.astype(numpy.int32)print x # ['1' '2' '3']print y # [1 2 3] 若转换失败会抛出异常print '使用其他数组的数据类型作为参数'x = numpy.array([ 1., 2.6,3. ],dtype = numpy.float32);y = numpy.arange(3,dtype=numpy.int32);print y # [0 1 2]print y.astype(x.dtype) # [ 0.  1.  2.]
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28

四、ndarray的矢量化计算

矢量运算:相同大小的数组键间的运算应用在元素上 

矢量和标量运算:“广播”— 将标量“广播”到各个元素

代码示例:

print 'ndarray数组与标量/数组的运算'x = numpy.array([1,2,3]) print x*2 # [2 4 6]print x>2 # [False False  True]y = numpy.array([3,4,5])print x+y # [4 6 8]print x>y # [False False False]
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

五、ndarray数组的基本索引和切片

一维数组的索引:与Python的列表索引功能相似

多维数组的索引:

  • arr[r1:r2, c1:c2]
  • arr[1,1] 等价 arr[1][1]
  • [:] 代表某个维度的数据

代码示例:

print 'ndarray的基本索引'x = numpy.array([[1,2],[3,4],[5,6]])print x[0] # [1,2]print x[0][1] # 2,普通python数组的索引print x[0,1] # 同x[0][1],ndarray数组的索引x = numpy.array([[[1, 2], [3,4]], [[5, 6], [7,8]]])print x[0] # [[1 2],[3 4]]y = x[0].copy() # 生成一个副本z = x[0] # 未生成一个副本print y #  [[1 2],[3 4]]print y[0,0] # 1y[0,0] = 0 z[0,0] = -1print y # [[0 2],[3 4]]print x[0] # [[-1 2],[3 4]]print z # [[-1 2],[3 4]]print 'ndarray的切片'x = numpy.array([1,2,3,4,5])print x[1:3] # [2,3] 右边开区间print x[:3] # [1,2,3] 左边默认为 0print x[1:] # [2,3,4,5] 右边默认为元素个数print x[0:4:2] # [1,3] 下标递增2x = numpy.array([[1,2],[3,4],[5,6]])print x[:2] # [[1 2],[3 4]]print x[:2,:1] # [[1],[3]]x[:2,:1] = 0 # 用标量赋值print x # [[0,2],[0,4],[5,6]]x[:2,:1] = [[8],[6]] # 用数组赋值print x # [[8,2],[6,4],[5,6]]
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31

六、ndarray数组的布尔索引和花式索引

布尔索引:使用布尔数组作为索引。arr[condition],condition为一个条件/多个条件组成的布尔数组。

布尔型索引代码示例:

print 'ndarray的布尔型索引'x = numpy.array([3,2,3,1,3,0])# 布尔型数组的长度必须跟被索引的轴长度一致y = numpy.array([True,False,True,False,True,False]) print x[y] # [3,3,3] print x[y==False] # [2,1,0]print x>=3 # [ True False  True False  True  False]print x[~(x>=3)] # [2,1,0]print (x==2)|(x==1) # [False  True False  True False False]print x[(x==2)|(x==1)] # [2 1]x[(x==2)|(x==1)] = 0print x # [3 0 3 0 3 0]
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13

花式索引:使用整型数组作为索引。

花式索引代码示例:

print 'ndarray的花式索引:使用整型数组作为索引'x = numpy.array([1,2,3,4,5,6])print x[[0,1,2]] # [1 2 3]print x[[-1,-2,-3]] # [6,5,4]x = numpy.array([[1,2],[3,4],[5,6]])print x[[0,1]] # [[1,2],[3,4]]print x[[0,1],[0,1]] # [1,4] 打印x[0][0]和x[1][1]print x[[0,1]][:,[0,1]] # 打印01行的01列 [[1,2],[3,4]]# 使用numpy.ix_()函数增强可读性print x[numpy.ix_([0,1],[0,1])] #同上 打印01行的01列 [[1,2],[3,4]]x[[0,1],[0,1]] = [0,0]print x # [[0,2],[3,0],[5,6]]
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13

七、ndarray数组的转置和轴对换

数组的转置/轴对换只会返回源数据的一个视图,不会对源数据进行修改。

代码示例:

print 'ndarray数组的转置和轴对换'k = numpy.arange(9) #[0,1,....8]m = k.reshape((3,3)) # 改变数组的shape复制生成2维的,每个维度长度为3的数组print k # [0 1 2 3 4 5 6 7 8]print m # [[0 1 2] [3 4 5] [6 7 8]]# 转置(矩阵)数组:T属性 : mT[x][y] = m[y][x]print m.T # [[0 3 6] [1 4 7] [2 5 8]]# 计算矩阵的内积 xTxprint numpy.dot(m,m.T) # numpy.dot点乘# 高维数组的轴对象k = numpy.arange(8).reshape(2,2,2)print k # [[[0 1],[2 3]],[[4 5],[6 7]]]print k[1][0][0]# 轴变换 transpose 参数:由轴编号组成的元组m = k.transpose((1,0,2)) # m[y][x][z] = k[x][y][z]print m # [[[0 1],[4 5]],[[2 3],[6 7]]]print m[0][1][0]# 轴交换 swapaxes (axes:轴),参数:一对轴编号m = k.swapaxes(0,1) # 将第一个轴和第二个轴交换 m[y][x][z] = k[x][y][z]print m # [[[0 1],[4 5]],[[2 3],[6 7]]]print m[0][1][0]# 使用轴交换进行数组矩阵转置m = numpy.arange(9).reshape((3,3))print m # [[0 1 2] [3 4 5] [6 7 8]]print m.swapaxes(1,0) # [[0 3 6] [1 4 7] [2 5 8]]
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26

八、ndarray通用函数

通用函数(ufunc)是一种对ndarray中的数据执行元素级运算的函数。

一元ufunc:

这里写图片描述

一元ufunc代码示例:

print '一元ufunc示例'x = numpy.arange(6)print x # [0 1 2 3 4 5]print numpy.square(x) # [ 0  1  4  9 16 25]x = numpy.array([1.5,1.6,1.7,1.8])y,z = numpy.modf(x)print y # [ 0.5  0.6  0.7  0.8]print z # [ 1.  1.  1.  1.]
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

二元ufunc:

这里写图片描述

二元ufunc代码示例:

print '二元ufunc示例'x = numpy.array([[1,4],[6,7]])y = numpy.array([[2,3],[5,8]])print numpy.maximum(x,y) # [[2,4],[6,8]]print numpy.minimum(x,y) # [[1,3],[5,7]]
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

九、NumPy的where函数使用

np.where(condition, x, y),第一个参数为一个布尔数组,第二个参数和第三个参数可以是标量也可以是数组。

代码示例:

print 'where函数的使用'cond = numpy.array([True,False,True,False])x = numpy.where(cond,-2,2)print x # [-2  2 -2  2]cond = numpy.array([1,2,3,4])x = numpy.where(cond>2,-2,2)print x # [ 2  2 -2 -2]y1 = numpy.array([-1,-2,-3,-4])y2 = numpy.array([1,2,3,4])x = numpy.where(cond>2,y1,y2) # 长度须匹配print x # [1,2,-3,-4]print 'where函数的嵌套使用'y1 = numpy.array([-1,-2,-3,-4,-5,-6])y2 = numpy.array([1,2,3,4,5,6])y3 = numpy.zeros(6)cond = numpy.array([1,2,3,4,5,6])x = numpy.where(cond>5,y3,numpy.where(cond>2,y1,y2))print x # [ 1.  2. -3. -4. -5.  0.]
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20

十、ndarray常用的统计方法

可以通过这些基本统计方法对整个数组/某个轴的数据进行统计计算。

这里写图片描述

代码示例:

print 'numpy的基本统计方法'x = numpy.array([[1,2],[3,3],[1,2]]) #同一维度上的数组长度须一致print x.mean() # 2print x.mean(axis=1) # 对每一行的元素求平均print x.mean(axis=0) # 对每一列的元素求平均print x.sum() #同理 12print x.sum(axis=1) # [3 6 3]print x.max() # 3print x.max(axis=1) # [2 3 2]print x.cumsum() # [ 1  3  6  9 10 12]print x.cumprod() # [ 1  2  6 18 18 36]
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12

用于布尔数组的统计方法:

  • sum : 统计数组/数组某一维度中的True的个数
  • any: 统计数组/数组某一维度中是否存在一个/多个True
  • all:统计数组/数组某一维度中是否都是True

代码示例:

print '用于布尔数组的统计方法'x = numpy.array([[True,False],[True,False]])print x.sum() # 2print x.sum(axis=1) # [1,1]print x.any(axis=0) # [True,False]print x.all(axis=1) # [False,False]
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

使用sort对数组/数组某一维度进行就地排序(会修改数组本身)。

代码示例:

print '.sort的就地排序'x = numpy.array([[1,6,2],[6,1,3],[1,5,2]])x.sort(axis=1) print x # [[1 2 6] [1 3 6] [1 2 5]]#非就地排序:numpy.sort()可产生数组的副本
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

十一、ndarray数组的去重以及集合运算

这里写图片描述

代码示例:(方法返回类型为一维数组(1d))

print 'ndarray的唯一化和集合运算'x = numpy.array([[1,6,2],[6,1,3],[1,5,2]])print numpy.unique(x) # [1,2,3,5,6]y = numpy.array([1,6,5])print numpy.in1d(x,y) # [ True  True False  True  True False  True  True False]print numpy.setdiff1d(x,y) # [2 3]print numpy.intersect1d(x,y) # [1 5 6]
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

十二、numpy中的线性代数

import numpy.linalg 模块。线性代数(linear algebra)

常用的numpy.linalg模块函数:

这里写图片描述

代码示例:

print '线性代数'import numpy.linalg as nlaprint '矩阵点乘'x = numpy.array([[1,2],[3,4]])y = numpy.array([[1,3],[2,4]])print x.dot(y) # [[ 5 11][11 25]]print numpy.dot(x,y) # # [[ 5 11][11 25]]print '矩阵求逆'x = numpy.array([[1,1],[1,2]])y = nla.inv(x) # 矩阵求逆(若矩阵的逆存在)print x.dot(y) # 单位矩阵 [[ 1.  0.][ 0.  1.]]print nla.det(x) # 求行列式
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13

十三、numpy中的随机数生成

import numpy.random模块。

常用的numpy.random模块函数:

这里写图片描述

代码示例:

print 'numpy.random随机数生成'import numpy.random as nprx = npr.randint(0,2,size=100000) #抛硬币print (x>0).sum() # 正面的结果print npr.normal(size=(2,2)) #正态分布随机数数组 shape = (2,2)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

十四、ndarray数组重塑

代码示例:

print 'ndarray数组重塑'x = numpy.arange(0,6) #[0 1 2 3 4]print x #[0 1 2 3 4]print x.reshape((2,3)) # [[0 1 2][3 4 5]]print x #[0 1 2 3 4]print x.reshape((2,3)).reshape((3,2)) # [[0 1][2 3][4 5]]y = numpy.array([[1,1,1],[1,1,1]])x = x.reshape(y.shape)print x # [[0 1 2][3 4 5]]print x.flatten() # [0 1 2 3 4 5]x.flatten()[0] = -1 # flatten返回的是拷贝print x # [[0 1 2][3 4 5]]print x.ravel() # [0 1 2 3 4 5]x.ravel()[0] = -1 # ravel返回的是视图(引用) print x # [[-1 1 2][3 4 5]]print "维度大小自动推导"arr = numpy.arange(15)print arr.reshape((5, -1)) # 15 / 5 = 3
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19

十五、ndarray数组的拆分与合并

这里写图片描述

代码示例:

print '数组的合并与拆分'x = numpy.array([[1, 2, 3], [4, 5, 6]])y = numpy.array([[7, 8, 9], [10, 11, 12]])print numpy.concatenate([x, y], axis = 0)  # 竖直组合 [[ 1  2  3][ 4  5  6][ 7  8  9][10 11 12]]print numpy.concatenate([x, y], axis = 1)  # 水平组合 [[ 1  2  3  7  8  9][ 4  5  6 10 11 12]]print '垂直stack与水平stack'print numpy.vstack((x, y)) # 垂直堆叠:相对于垂直组合print numpy.hstack((x, y)) # 水平堆叠:相对于水平组合# dstack:按深度堆叠print numpy.split(x,2,axis=0) # 按行分割 [array([[1, 2, 3]]), array([[4, 5, 6]])]print numpy.split(x,3,axis=1) # 按列分割 [array([[1],[4]]), array([[2],[5]]), array([[3],[6]])]# 堆叠辅助类import numpy as nparr = np.arange(6)arr1 = arr.reshape((3, 2))arr2 = np.random.randn(3, 2)print 'r_用于按行堆叠'print np.r_[arr1, arr2]'''[[ 0.          1.        ] [ 2.          3.        ] [ 4.          5.        ] [ 0.22621904  0.39719794] [-1.2201912  -0.23623549] [-0.83229114 -0.72678578]]'''print 'c_用于按列堆叠'print np.c_[np.r_[arr1, arr2], arr]'''[[ 0.          1.          0.        ] [ 2.          3.          1.        ] [ 4.          5.          2.        ] [ 0.22621904  0.39719794  3.        ] [-1.2201912  -0.23623549  4.        ] [-0.83229114 -0.72678578  5.        ]]'''print '切片直接转为数组'print np.c_[1:6, -10:-5]'''[[  1 -10] [  2  -9] [  3  -8] [  4  -7] [  5  -6]]'''
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51

十六、数组的元素重复操作

代码示例:

print '数组的元素重复操作'x = numpy.array([[1,2],[3,4]])print x.repeat(2) # 按元素重复 [1 1 2 2 3 3 4 4]print x.repeat(2,axis=0) # 按行重复 [[1 2][1 2][3 4][3 4]]print x.repeat(2,axis=1) # 按列重复 [[1 1 2 2][3 3 4 4]]x = numpy.array([1,2])print numpy.tile(x,2) # tile瓦片:[1 2 1 2]print numpy.tile(x, (2, 2))  # 指定从低维到高维依次复制的次数。 # [[1 2 1 2][1 2 1 2]]

转载于:https://www.cnblogs.com/pyxiaomangshe/p/7903435.html

你可能感兴趣的文章
web.xml 中加载顺序
查看>>
pycharm激活地址
查看>>
hdu 1207 四柱汉诺塔
查看>>
Vue 2.x + Webpack 3.x + Nodejs 多页面项目框架(上篇——纯前端多页面)
查看>>
display:none与visible:hidden的区别
查看>>
我的PHP学习之路
查看>>
【题解】luogu p2340 奶牛会展
查看>>
对PostgreSQL的 SPI_prepare 的理解。
查看>>
解决响应式布局下兼容性的问题
查看>>
京东静态网页练习记录
查看>>
使用DBCP连接池对连接进行管理
查看>>
【洛谷】【堆+模拟】P2278 操作系统
查看>>
hdu3307 欧拉函数
查看>>
Spring Bean InitializingBean和DisposableBean实例
查看>>
Solr4.8.0源码分析(5)之查询流程分析总述
查看>>
[Windows Server]安装系统显示“缺少计算机所需的介质驱动程序”解决方案
查看>>
[容斥][dp][快速幂] Jzoj P5862 孤独
查看>>
Lucene 学习之二:数值类型的索引和范围查询分析
查看>>
软件开发工作模型
查看>>
Java基础之字符串匹配大全
查看>>